
201

Aspect-Oriented Programming
H o w t o i m p l e m e n t i n . N E T

M u h a M a d Fa t h i
w w w . M i M F a . n e t

Aspect Oriented Programming
M M F20

ROP: Reflection-Oriented Programming (1982)
Reflection can be used for observing and modifying program execution at

runtime.

SOP: Subject-Oriented Programming (1993)
implementation of viewing subject instead of the viewing object

Aspect Oriented Programming
M M F20

AOP: Aspect-Oriented Programming (1997)

 Methodology
 Architecture

Aspect Oriented Programming
M M F20

Aspect Oriented Programming (AOP) is a new development
technology that permits separation of cross-cutting concerns
that have in the past proved difficult to implement using object
oriented programming (OOP).
Aspect-oriented programming entails breaking down program
logic into distinct parts; Of course, on the special enamel.

AOP Can be
 Language
 Programming

Aspect Oriented Programming
M M F20

OOP AOP

Aspect Oriented Programming
M M F20

Requirement Results

Aspect Oriented Programming
M M F20

 Concern
 Core level Concerns
 System level Concerns
 Cross-Cutting Concerns

 Concern Identifier

 Concern Weaver

 Concern Implementation

 Point Cut, Advice, Join Point

Aspect Oriented Programming
M M F20

Concern is a definite goal, concept or scope of the workflow.

Any system is consists of several concerns

 Core level Concerns: Main purpose of software. i.e. The natural components
of the software.

 System level Concerns: Other tasks Software. i.e. security, logging, transaction,
authentication, persistence and so on.

 Cross-Cutting Concerns: concerns that tend to affect several other concerns.
For instance, if a logging feature is to be implemented in an application, it
is likely that all the underlying modules will have code for logging, making
the underlying modules less specialized and makes it very hard to predict
what effects changes in the code for logging will have.

Aspect Oriented Programming
M M F20

In the first step, the requirements are decomposed to identify cross-cutting
and common concerns. Here, the core concerns are separated from the cross-
cutting system level concerns.

Aspect Oriented Programming
M M F20

For example:
In the credit card processing
module in ATM, could identify
these four concerns:
Core credit card processing
Logging
Authentication
Persistence

In the second step of the development, each concern is implemented separately.

Aspect Oriented Programming
M M F20

In the credit card processing module, would implement the core credit card
processing unit, logging unit, persistence unit and authentication unit separately.

Aspect Oriented Programming
M M F20

Weaving is the process of composing a component with a
cross cutting aspect.
A weaver can compose objects at statically at compile time,
or after aspects and components are compiled to object
code, byte codes or intermediate language generated by the
compilers. It is also possible to compose components with
aspects at run time my calling a weaving library, supplying the
aspects and components as parameters, or dynamically when
the component is loaded for use by an application when it

is first called.

Aspect Oriented Programming
M M F20

In the last step, an aspect integrator specifies composition
rules by creating modularization units (aspects).
The composition process is also called weaving or integrating.
Back to the credit card processing module, we would
specify each operation’s start and completion to be logged
and that each operation must be authenticated before it
proceeds with the business logic.

Aspect Oriented Programming
M M F20

The point in the execution of the
code where the advice should be
applied/executed.

A pointcut is a set of joinpoints,
but the term is sometimes used
instead of “joinpoint.”

Aspect Oriented Programming
M M F20

 Is an elegant and simple construct
 Coding is reduced
 Is orthogonal to the primary purpose of a module
 Bettering in the encapsulation
 Bettering reuse of the arbitrarily invoked code and the target module

 Can be convert the cross-cutting concerns into an object
 Makes more understandable source code.
 On the basis of object-oriented programming.
 etc...

Aspect Oriented Programming
M M F20

public Document[] GetDocuments(string format) {
try { using (var context = Directory.GetFiles("")) {

var documents =
context

.Documents

.Where(c => c.Name.EndsWith("." + format))

.ToArray();
logger.LogSuccess(

"Obtained " + documents.Length + " documents of type " + format +
Environment.NewLine +
"Connection String: " + connectionString);

return documents;
} } catch (Exception ex) {
logger.LogError(

"Error obtaining documents of type " + format +
Environment.NewLine +
"Connection String: " + connectionString, ex);

throw; } }

Aspect Oriented Programming
M M F20

public Document[] GetDocuments(string format)
{

using (var context = Directory.GetFiles(""))
{

return
context

.Documents

.Where(c => c.Name.EndsWith("." + format))

.ToArray();
}

}

Clearly, the logging code has made the original method less readable. It has tangled
the real method code with logging code.
This is also a violation of the Single Responsibility Principle.
In fact main purpose from that method is below method.

Aspect Oriented Programming
M M F20

try
{

//Do something here
logger.LogSuccess(…
//..

}
catch (Exception ex)
{

logger.LogError(…
throw;

}

Also, we expect to find the same logging pattern in many methods all over the code
base. Basically, we expect to find the following pattern:

Aspect Oriented Programming
M M F20

There are two types of AOP frameworks for .NET.
 Proxy-Style
 IL Rewriter

Aspect Oriented Programming
M M F20

Aspect Oriented Programming
M M F20

Collected By: MiMFa

